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Chapter 1

Descriptive Statistics

Statistical analysis learns from data.
Consider the following dataset obtained after testing 10 beams at the lab:

Load in kN
First crack load || Failure load
26.75 42.25
41.35 41.35
37.75 41.35
28.90 42.25
47.15 47.15
26.75 44.95
42.25 42.25
28.90 45.85
46.00 46.00
28.90 42.25

1.1 Numerical Summaries
n observed values are x1, o, ..., T,.

e The sample mean

— The sample mean of the first crack load is 1—10 X 354.7 = 35.47 kN.
— The sample mean of the failure load is % x 435.65 = 43.565 kN.

e The sample median
Order the observed values z;. If n is odd then the median is (n + 1)/2th value. If n is
even the median is the average of values at n/2 and n/2 + 1th places.

— The sample median of the first crack load is 33.325 kN.



— The sample median of the failure load is 42.25 kN.

e The sample mode
most frequently occurring value(s)

— The sample mode of the first crack load is 28.90 kN.
— The sample modal value of the failure load is 43.565 kN.

e The sample variance

e Unbiased estimator of variance

1
2 _ Z )2
ST a1 (z: —2)

=1

Note: Y0 (z; —2)* = >0 (@)% — nz?

e The sample standard deviation

s = nilz(a:i—x)Q

=1

— The sample variance of the failure load is 4.265 kN2.
— The sample standard deviation of the failure load is 2.0652 kN.

e The sample coefficient of variation (COV)

S
v =

T
— The sample coefficient of variation (COV) of failure load is 0.0474.
Data observed in pairs
Two sets of data {z;}!; and {y;}I ;.
e The sample covariance
RN _ _
SXy = — Z(iUz —z)(yi — 9)

n—14%
=1

e The sample correlation coefficient

Cosxy 1 K fwi—x (vi—¥
TXY_SXSY_n—lz( Sx )( Sy )

—1<rxy <1

— The sample correlation coefficient between first crack and failure loads is 0.2605.
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1.2 Sample Percentile

Sample 100p percentile:
The data value such that 100p% of the data are less than or equal to it.
25 percentile = first quantile
50 percentile = second quantile
75 percentile = third quantile

1.3 Chebyshev’s Inequality

Data set: x1,x9,...,2,
Sample mean ¥
Sample standard deviation s > 0
Define: Sy ={i,1 <i<n:|z; — x| < ks}
N(S;,) = Number of elements in the set S (i.e., No. of i such that |z; — X| < ks)
For k > 1
T
One sided version: N (k) = No. of i such that x; — z > ks
Then for &k > 1:

N(k) 1
<
n — 14+k2

1.4 Graphical Displays

e Histograms
e Cumulative frequency plot

e Box plots
—’L—’M

X 2
15% auantile wuartile aruantile

Figure 1.1: Box plot.
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Chapter 2

Elements of Probability

Probability — two interpretations —
e frequency interpretation

e subjective interpretation

Sample space

The set of all possible outcomes of an experiment (denoted by S or )
Any subset E of the sample space is known as an event.

Example 1.

A coin is to be tossed until a head appears twice in a row.

Sample space, S ={(H,H),(T,H,H),(H,T,H,H),(T,T,H,H),...}.

We can also write this in a different way: S = {(ej,ea,...,en,€,-1),n > 2} where ¢; is
either HorT and e, 1 =¢,=H, e, o="1T.

2.1 Axiomatic Definition of Probability

Sample space: S
Event: F
Probability of event E, P(E) satisfies:

Axiom 1: 0 < P(E) <1
Axiom 2: P(S) =1

Axiom 3: Mutually exclusive events Ey, Es,... (ie., E; N E; = ¢, when i # j)
P (U?ZlEZ) = Z?:l P(EZ), n = ]_, 2, ..., 00.



Figure 2.1: Venn diagram showing two events E and F'.

Corollary:

(i) E and E° are mutually exclusive, i.e.,

EUE =S8
P(EUE®) = P(S) =1
P(E°) =1 - P(E)

(ii)) Two events £ and F', P(EUF) = P(E)+ P(F)—P(ENF). (Note: ENF is also written
as E'F) see Figure 2.2.

Inclusion-Exclusion Identity
P(EsNE;N---NE,)
=Y P(E) - P(EE)+ Y P(EEE)— -+ (-1)"""P(E\E, ... E,)

i<j i<j<k

2.2 Conditional Probabilities

Probability that E occurs given that F' has occurred, denoted by

P(ENF)

P(E|F) = o)

2.3 Independent Events

If P(EF)= P(E)P(F) then E F are independent. We also have P(E|F) = P(FE)
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Example 2.

A fair coin is to be tossed until a head appears twice in a row. What is the probability that it
will be tossed exactly three times?

P{3 tosses} = P{(T,H,H)}

1 1 1
2 2 2

What is the probability that it will be tossed exactly four times?

P{4 tosses} = P{(T\T,H,H)U (H,T,H,H)}
— P{(T,T,H,H)} + P{(H,T,H,H)}

1 1 1 1 11 1 1

==X xXx=Xx=]+[=x=x=x=

2 2 2 2 2 2 2 2
1

1 1

16716 3

Example 3.
A, B, C' three events.

(a) only C occurs: C'N A°N B¢

(b) at least two events occur: (ANB)U(ANC)U(BNC)

(
(d) all three events occur: AN BNC

)
)
c) at least one event occurs: AU BUC
)
e) at most two occur: (AN BNC)°

)

(
(f) none occurs: (AU BUC)¢ = A°B°C*

Example 4.

Boole’s inequality: P (Ul E;) < > | P(E;)
Proof: U! \E;, = By UE{E, UESESEsU---UES. .. ES_ | E°
Denote Fy = FEy, Fo =E{NE,,...,F, =Ef...E_|E,.
Hence, Uj_ E; = UL F;.
But F; are mutually exclusive.

P(UL E) = P(UL E) =3 P(F;) = > P(Ef...Ef |E;) <" P(E).
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Figure 2.2: Venn diagram showing three events Fy, Es, and Es. Here, I} = Ey, F5» = Ey N EY
(hatched), and F3 = E3 N Ef N ES (dotted).

Example 5.

A deck of 52 playing cards, containing all 4 Jacks, is randomly divided into 4 piles of 13 cards
each.

(a)
P(E;) = P({the first pile has exactly 1 Jack})

4y 5 (48
— (1) — (12) ~ (.4388
(13)
(b) Similarly,
P(Ey) = P({the second pile has exactly 1 Jack})

(4) % (18
_ W x () 52(12) ~ 0.4388
(v3)
()
P(Es|Ey) = P({the second pile has exactly 1 Jack given that first pile has exactly 1 Jack})

3 36
— (1) X (12) ~ 0.4623

)
(d)
P(Es|E1Ey) = P({the third pile has exactly 1 Jack | first and second pile have exactly 1 Jack each})
ORI
)
(e)
P(E4|E EyEs) =1
(1

P(E\EyE5FE,) = P({all the piles have exactly 1 Jack each})
= P(E))P(E3|Ey)P(Es|E1Ey) P(Ey|EyEsE3)
~ 0.1055
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Example 6.

N graduating students throw their graduate caps and then each student randomly selects one.
Define the events E; = ith student gets his/her own cap
The probability that none of the N students gets his/her own cap is

P(no one selects own cap) =1 — P(Ey UFEyU---U Ey)

=1-|) _P(E)— > P(E,E,)+ -+ (-)""'P(E\E,... Ey)

11<19
N
=1-> P(E)+ > P(Ey,Ey,)+---— (-)"N"'P(E\E; ... Ey)
=1 11 <ig
Now, P(Ey B, ... E;,) = %2 and
(N —k)!
11 <t <--<ig 11 <t < <l
[N\ (N —k)!
~\k N!
N (N—k)!
(N —k)E NI
1
TR
Hence,
1 1 1 1 1
P(no one selects own cap) =1 — T + T3 + y TR (—1)1\’“m
1 1 1 1 v 1
gty st tEU Ty
Example 7.

You want to invest in a computer hardware tool. The probability that in any year that hardware
will get damaged = p. The probability that the hardware will become obsolete in year ¢ = g;
(given the tool is not obsolete in the prior years).

Define events:

D; = the hardware gets damaged in year ¢

O; = the hardware becomes obsolete in year ¢

P(D;) =pand P(O;|0;_1) = q;

The probability that the bridge’s life does not end in the first year

= P(D{NO5) = P(DS)P(05)
=[1 = P(Dy)][1 = P(Oy)]
=(1-p(-aq)
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For 2nd year,

= P(DTNO7) N (D3N 03)] = P(DTNO7)P(D; N 03Dy N OY)
= P(DynO7)P(D5|05 0 Dy N O7)P(O5|Dy N OY)

Since the events D; and O; are independent
P(D5|03nDiNOY) = P(D3) =1—p
P(O5|DTNOY) = P(D3) =1 —¢q
Hence,

P[(DyNOY) N (D3N Os3)]
=1-=p)(1=q)1—=p)(1—q)
= (1 —p)2(1 —q)(1—q)

For nth year,

Plsurvival through n years]
= P(DSNOSN---NDENOE)

(1—a)

=({1-p)"

n
1=

The life of the hardware ends in year n = the hardware has survived n — 1 years

Pl[survival through n — 1 years]
n—1

=(1=-p" '] - @)
i=1

Also,

Plthe hardware’s life ends in year n|

= P(D,, U Oy|survival through n — 1 years)

= P(D,|previous survival) + P(O,,|previous survival) — P(D,, N O, |previous survival)
= P(D,) + P(O,) — P(Dn)P(0,|0;_)

=P+ qn—Dln

Hence,
n—1

P(life ends in year n) = (p+ gn — pgn)(1 —p)" ' [ (1 — a)
=1
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2.4 Total Probability

e An event A

e N mutually exclusive events B,,,n =1,2,..., N where UY,B; = S
Then P(A) = 2N | P(A|B,)P(B,)

Proof: A=ANnS=An(UY,B,) =UY,(ANB,). Also, (AN B,) are mutually exclusive
events. Hence,

P(A)=P(ANS)=P[UYL (AN B,)]

P(ANB,)

= 11

P(A[B,)P(By)

1

7

2.5 Bayes’ Theorem

P ) - _PABIP(B,)
> =1 P(A[B;)P(B))
Proof:
p(B,|A) = LB 04) @EE)A)
_ P(A|B,)P(B,)
a P(A)
_ _ P(A[B)P(B.) using theorem of total probabili
- Z;V:l P(AIB)P(T) [using th f total probability]
Example 8.

Basket 1: 7 Red balls & 5 Blue balls

Basket 2: 4 Red balls & 12 Blue balls

A ball is selected randomly from one of the baskets. If the selected ball is Red what is the
probability that it has been selected from Basket 27

Define:

R = event of selecting a Red ball,

By = selecting Basket 1,

By = selecting Basket 2.

Hence, P(By|R) =7

P(R|B;) =7/12, P(R|Bs) =4/16 = 1/4, P(B;) = P(B3) = 1/2.
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Using Bayes’ theorem,

P(R|By)P(Bs)
P(Bs|R) =
(Ball) = B RIBP(By) + PRI Bs) P(By)
11
_ 4”3
X5 tixXs
_ 3
10

Example 9.

40% of the students from a class are good in a subject. Class tests are performed but the tests
are only 90% reliable, i.e., tests can identify good students only 90% of the time. Define the
events:

G = good student

T = the student scores well in the test

P(G) =04, P(T|G)=0.9, P(T|G°) = 0.1.

What is the probability that the student is good if he/she passes the test, i.e., P(G|T) =7

Using Bayes’ theorem,

P(T|G)P(G)
P(G|T) =
(GIT) P(T|G)P(G) + P(T|G°¢)P(G*)

B 0.9x0.4

~ 0.9x04+0.1x0.6

~ 0.8571
Example 10.
Two routes from Los Angeles to Santa Barbara.

Rote! B’
LA
Route &

Figure 2.3: Two routes from LA to SB.

Define events:

R, = Route 1 is open

Ry = Route 2 is open

During a wildfire, P(R;) = 0.8, P(Rs) = 0.4, P(R; N Ry) = 0.25.

What is the probability that Route 1 is open given that Route 2 is open?
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P(RiNRy) 025
P(Ry) 04
What is the probability that Route 1 is closed given that Route 2 is closed?

P(Ry|Ry) = = 0.625

. P(RSN RS
PUREIRS) = T =

P(R{ N R5) =1— P([R{ N Rs]%)
=1—P(RyURy) [see figure below]
=1—[P(R) + P(Rz) — P(R1 N Ry)]
—1—[0.8+0.4—0.25]
=1-0.95

=0.95

Figure 2.4: Venn diagram showing two events R; and Rs.

Hence,
cimer  P(RSNRS)  0.05
P(R¢|RS) = PERC) 2 = g — 00833
¢ .

The probability of Route 1 being open given that Route 2 is closed is
P(R.|R3) =1 — P(R{|R3)
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Chapter 3

Random Variables

A mapping that transforms the events to the real line.

Example 1.

Toss a fair coin.
Define a random variable X where
X is 1 if head appears and
X is 0 if tail appears.

Hence,

P(X=0)=1/2

P(X=1)=1/2
Example 2.

Cast two dice.
Define the random variable as sum of the outcomes.

Hence,
P(X=2)=P{(1,1)} =1/36
P(X =3)=P{(1,2),(2,1)} =2/36
P(X =4) = P{(1,3),(2,2),(3,1)} = 3/36
P(X =5)=P{(1,4),(2,3),(3,2),(4,1)} = 4/36
P(X =6) = P{(1,5),(2,4),(3,3),(4,2)
P(X =7)=P{(1,6),(2,5),(3,4), (4,3)
P(X =8) = P{(2,6),(3,5),(4,4), (5
P(X =9) = P{(3,6),(4,5),(5,4),(6,3)} = 4/36
P(X =10) = P{(4,6),(5,5),(6,4)} = 3/36
P(X =11) = P{(5,6),(6,5)} = 2/36
P(X =12) = P{(6,6)} = 3/36

(5, 1)} =5/36
,(5,2),(6,1)} = 6/36



3.1 Cumulative Distribution Function (CDF)

For any real number x
F(z)=P(X <2

i.e., the probability that the random variable X takes on a value less than or equal to z.
Note:

Pla<X <b)=P(X <b)— P(X <a)
= F(b) — F(a)

3.2 Types of RV

3.2.1 Discrete Random Variable

X takes discrete values

Probability Mass Function (pmf)

Hence,

o CDF: F(a) = 3 yea P(2),
o F(o0) =32 p(x:) =1,

o F(—o0) =0.

Example 3.

Cast a die.
X = outcome
Hence, the probability mass function

%
%

V2 3 4 5 6 z

Figure 3.1: pmf and CDF of die cast experiment.
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3.2.2 Continuous Random Variable

possible values of X is an interval.

PXeB)= | f)dr
pdf

Note:
e CDF: F(a) = P{X € (—o0,d]} = [*_ f(z)dx

e f(x) is called probability density function (pdf) of X,

. = [T fa P[X € (—o0,00)] =1,
.P(agxgb):ja”f( dz but P(X = [ f(x)
o &F(a)= f(a),

o ['(—o0)=0.

Example 4.
Let the random variable X has a probability density function (pdf)

f(x):{c 0<z<0

0 otherwise

where ¢ is a constant.
To estimate ¢ use F/(o0) =1

/ e
:>/wcdx—1

=C - x}o =
=c=0.1

The cumulative distribution function

foxcdx:ca::O.lx, 0<x<10
F(x) =41, x> 10
0, x <0

What is the probability that X is between 2 and 57

5
P(2<X§5):/ cdr =0.3
2
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= T
X~
R
N

rd

__Pz
Figure 3.2: pdf and CDF of X.

3.3 Expectation
E(X] =D wiP(X =) = D wip()

Example 5.

Cast a die and denote the outcome by a random variable X. Hence,

E[X] = inP(X = ;)

=1-P(X=1)+2-P(X =2)+3- P(X =3)
+4-P(X=4)+5-P(X =5)+6- P(X =6)

1
=21--=35
6

Example 2 contd.

From Example 2, the expected sum of two dice

E[X]=2-P(X=2)+3-P(X=3)+---+12- P(X =12)

12

= iP(X =)
=2

=252/36 =7
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Example 4 contd.

From Example 4, the expected value of X is

3.4 Variance

[
=E[X? - 2uX + ]
= E[X?] — 2uE[X] + 1°
=E[X?] -
= E[X?] - (B[X])’

e Var(aX +b) = a*Var(X)

(
e Var(aX) = a?Var(X)
e Var(b) =

e Var(X + X) = 4Var(X)

Standard deviation = 4/ Var(X)
Covariance of two random variables X,Y

Cov(X,Y) = E[(X — jix)(Y — uy)] = E[XY] - E[X]E[Y]

Cov

Y) = Cou(Y, X)

X) = Var(X)

(X,

ov(X,

ov(aX,Y)=a Cov(X,Y)
Cov(X+2,Y)=Cov(X,Y)+ Cov(Z,Y)

Cov (Zz 1X17Z] 1 J) D e 1Zg , Cov(X;,Y))

Var (3201, Xi) = >, Var(Xy) + 3000, Z?:l,j;éi Cov(X;, X;)
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If X and Y are independent random variables, then

Cov(X,Y)=0

Var (i Xi) = iVar(Xi)

The correlation coefficient
Cov(X,Y)

CorrXY) = R Ovar(Y)

3.5 Properties of the Expected Value

e Discrete RV: E[g(X)] = >__ g(z)p(x)
e Continuous RV: E[g(X)] = [7_g(z)f(z)dx
o ElaX +b) =aE[X]+b

[ ]
E[X"] = Zof z"p(x) Dlscre'te RV
ffoo 2" f(z)dz Continuous RV

e Expected value of a function of two RVs

> >, 9(z,y)p(z,y)  Discrete RV

Elg(X,Y)] = {foooo ffooog(ilfay)f@?y)dxdy Continuous RV

o E[X +Y]=E[X]|+E[Y]

Example 2 contd.
Let us denote the outcome of the first die by X; and the second die by X,. Hence, X = X;+ Xo.

E[X] =E[X; + X)]
= E[X,] + E[X,]
=35+4+35=7 (see Example 6)

3.6 Moment Generating Function, ¢(¢)

o(t) =E [etX] _ dow ep(x) Discrete RV
ffooo e’ f(x)dx Continuous RV

nth moment of the random variable is E[X"| and it can be computed from ¢(t) using

E[X"] = & o(1)

t=0

ie., E[X] = ¢(0) and E[X?] = ¢"(0).
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Example 6.

o Aem?
il

¢ - ti)‘ie_/\
o(t) = Ble"™] = ;6 i

2 G ()\ety
— ¢ Z_; il

_ t
—e /\e)\e

18

The moment generating function of X with pmf p(7)

_ e)\(etfl)

¢'(t) = AefeM D),
@' (t) = (Aet)2eMe =D - \eteAe D),
This gives E[X] = ¢/(0) = A and E[X?] = ¢"(0) = A% + X

3.7 Markov’s Inequality

For any value a > 0,
E[X]

a

P(X >0) <

3.8 Chebyshev’s Inequality

If the mean of X is p and variance is o2, for any k > 0,
2

P(IX =l > k) <%

3.9 The Weak Law of Large Numbers

Let X1, Xs,... be a sequence of i.i.d. (independent and identically distributed) random vari-
ables with E[X;] = p.
For any € > 0

n
Proof:
p<} OIS —ﬂ‘ >e> :P<‘X1+X2+---+Xn—7w‘ >n6>
n
< ar(X; + 222—1- + X0 [using Chebyshev’s inequality]
n2e
no?
T n2e
o2
=— = 0asn— o0
ne
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3.10 Jointly Distributed RVs

Joint CDF of X and Y

F(z,y) = P(X <z,Y <y)
Hence,
o Fy(z2)=P(X <z)=P(X <z,Y < 00) = F(,0)
o Iy(y) =P(Y <y)=P(X <00,Y <y) = F(oo,y)

Joint pmf p(z;,y;) = P(X =z, Y = v;)

Marginal pmf: px(x;) = P(X = ;) = P( Ui{X =2,Y = y]}> = >, p(wi, y;)

e py(y) =P =y) = P( Ui{X =2,V = Z/j}) = > p(xi, ;)

Joint pdf f(a,b) = az—ZbF(a, b)

Marginal densities: fx(z) = [*_ f(z,y)dy

fr(y) = [0 fa,y)da
If X and Y are independent

— F(a,b) = F(a)F(b)
— Discrete RV: p(x,y) = px(x)py (v)
— Continuous RV: f(x,y) = fx(z)fy(y)

Example 7.
Let X be a random variable with probability density

f(x):{c(l—x), —l<z<l1

0, otherwise

Determine the value of ¢ and F'(x).

Floo) = [ flayin =1
/_l c(l —a2Hdr =1

=

= c[x—x3/3]11:1

= c[1-1/3)—(-1+1/3)] =1
= c[2/3+2/3] =1

= c=3/4
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The cumulative distribution function

Fla) = / F(a)da

I
—
L

o
—
—_
|
2
[N}
SN—
=
S

I
o
| —
S
|
y w|8
w
| 8
L

Example 8.
The longevity T of light bulbs is described by the following probability density function

e ™M >0
t) = =
f®) {0 t<0

where )\ is a constant.
The cumulative distribution function

= t)xe_)‘TdT
-4l
= [-e ™ — (-1)
— 1M
N
)CTG;) E’C‘t) |
-
—> t

g

Figure 3.3: pdf and CDF of T'.
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The mean life is

Median: F(t,,) = [, Ae *dt = 0.5. This gives t,, = +[—log(0.5)] = 0.693/) = 0.693E[T].

Var(T') = /Ooo(t —1/A)?he ™ Mdt = 1/)2

Example 9.

X and Y are independent random variables with means px and uy, respectively, and variances
o3 and o, respectively.

E[XY] =7 and Var(XY) =7
E[XY] = E[X]E[Y] = pxpy
E[(XY)’] = E[X*|E[Y”]

= {Var(X) + (E[X])*HVar(Y) + (E[Y])*}
= (0% + 1x) (03 + 1)

Hence,
Var(XY) = E[(XY)?] — (E[XY])?
= (0% + 1X)(oy + py) — pppy
= 0% 0y + oxpy + o px
Example 10.

At the graduation ceremony N students throw their caps and the select one at random. What
is the expected number of students who will get their own cap back?
Let X denote the no. of students who select their own cap

¥ 1, if 1th student selects own cap
o 0, otherwise

Hence, X = YV, X;
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Also, P(X; = 1) = probability that ith student select own hat = 1/N

1

]E[Xi]:1'P(Xi:1)+O'P(X¢=0)=N

Example 11.

A basket has n Red balls and m Blue balls. k balls are selected at random from the basket.
Let X denote the number of Red balls selected.
P(X =1) =7 and E[X] =7

Let us denote
if jth ball selected is Red

1
Xj=19. : .
0, otherwise 1=12,...,k
Hence, X = 25:1 X;
E[X] = E [, %] = 2 ElX]

Now,
E[Xj] = 1-P(Xj = 1) +O-P(Xj =0)
=1- +0
n—+m
_n
N n—+m
This gives
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Example 12.

Joint probability mass function of X and Y is given by

: 72)\>\j
p(xzi,y:j):@@ S 0<i<
7 7!

i1

j=i I

I o= 1
== M\

e
:)\_ 2Ai A=)

i! = (7 —0)!

A= A
T Zﬁ

k=0

)\’L
R 2

7!

)\i
— DA

Example 13.

Assume an arrow hitting any point inside a disk is equally likely, i.e., the hitting point is
uniformly distributed within the disk of radius R. Hence, f(z,y) = k,0 < 22 +3*> < R?
Determine k =7 Determine P(D < d) =7 where D denotes distance between the hitting point
and center of the disk.

We know
F(oo,00) =1
= // kdxdy = 1
0<a?4y2<R?

= k // dedy| =1

OSm2+y2SR2
A

J

~
area of the circle with radius R

= k-mR*’=1
1
k= —
= mR2

Hence, f(z,y) = 1/7R?
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D = distance between the hitting point and center of the disk.
Hence, D <d = 2*+y*<d°

So,
P(D < d) ——dzd
/ / 2
0<z24y2<d?
1
= — dxd
mR? / / 4
0<a24y2<d?
area of the cir;l:e with radius d
1
= — . 1d?
ey
d2
TR
Example 14.

Let X has density

f(x)z{(l)’ el

otherwise
E[X3] =7
Elp(X)] = [ g(e)f(a)ds
Ry
E[X?] = / 2?dx
0
xt '
vy
0
B 1
4
OR
Let Y = X3
FX(x):/ldx—x 0<z<l1
0
Hence,
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So, we can write

Hence,

Example 15.

A random variable has a triangular distribution

3 3<a<8
fle)=4q02—-2% 8<a2<13

0 otherwise

Determine P(X < 4) =7

Determine P(X > 4) =7

P(X>4)=1-P(X<4)=1-F4)=1-002=0.98
Determine P(4 < X <9) =7
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P(1< X <9) :F(9)—F(4):/1 f(x)dx—/: f(x)dz
:/49f(x)dx
_/48”32_53da:+/: {0.2—:52_58} dx

=0.48+0.18
= 0.66

Estimate E[X]

o

E[X] = / of ()dz

oo

8 _ 13 _
:/xm 3dx+/ T 0.2—33 8
3 25 8 25
= 3.1667 + 4.8333
=8

Example 16.

Define the indicator random variable as

I 1 if an event A happens
]o otherwise

Show that the expected value of the random variable I is same as the probability of event A.
The probability mass function of [ is

Hence,

E[f]—zip@)
=1-p(1)+0-p(0)
=1-P(I=1)+0-P(I=0)
= P(I=1)
= P(A)
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Example 17.
Prove that E[X?] > (E[X])?

0 < Var(X)
E[X?]

VA
=
>

E[X?] = (E[X])* when Var(X) =0, i.e., X is deterministic.

Example 18.

Prove that P(A) = P(A|X < x)F(x) + P(A|X > x)[1 — F(x)]
Let us define an event B = {X < x}.
Hence, B¢ = {X > z}.
Further, P(B) = P{X <z} = F(z) and P(B¢) = P{X >z} = [1 — F(x)]
Therefore,

P(A) = P(A|B)P(B) + P(A|B*)P(B")
— P(A|X < 2)F(z) + P(A|X > z)[1 — F(2)]
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Chapter 4

Conditional Probability Distributions

Any two events A and B with P(B) >0

P(ANB)

P(AIB) = ~ 5

where P(B) > 0.

4.1 Discrete Random Variables

If X and Y are discrete random variables then the conditional pmf of X given Y =y

pxv(zly) = P(X = z|Y =y)
_ P(X=2Y =y)
- P(Y=y)
_ p(z,y)
pY(y)

Yy such that py(y) > 0

Conditional probability distribution function of X given ¥V =y
Fxy(zly) = P(X < z[Y =y)

= prw(a’y)

a<z

Conditional expectation

EX]Y =y = prX\Y zly)

4.2 Continuous Random Variables

Conditional probability density function of X given Y =y

Ixpy (zly) = f(Yx,y) Vy such that fy(y) >0



Conditional probability distribution function of X given YV =y

Fxy(zly) = P(X <z|Y =y)

/ fxy(aly)da

EX|Y =y] = /00 x fxy (z|y)dx

[e.9]

Conditional expectation

Example 1.
Joint density of X and Y

b6ry(2 —x —y), l<r<l,0<y<l1
f@w)Z{ ( )

0, otherwise
E[X|Y =y] =7
The marginal density
00 1
fry)= [ [flzy)de= [ 6xy(2—a—y)de
—00 0
ZL’S CEQy 1
=6 [ 2_ - 4
y1r 3 0
= y(4—3y)

The conditional density

_ flwy)  Gry2—-w—y) 6x(2—x—1y)
‘&W@wy_fﬂw‘_ y(d—3y) (4-3y)

E[X|Y:y]:/ooxfxy(x|y)da::/0 6x2(2::1:—y)dx

oo (4 - 3y)
(2—1y)-2—6/4
4 — 3y
5 —4y
8 —6y

Example 2

Joint density of X and Y

Lye—wy D<x<o00,0<y<?2
fla,y)=32Y reoensy
0, otherwise

E[eX?Y = 1] =?
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fY(y):/_ f(x,y)din/O %ye‘”ydx

=1/2

Hence,
f(xvy) _ %ye_wy Ty

o) 1z

fxy (zly) =

So, fxy(z|l) =e™"

(e 9]

E[g(X)] = / o) fx(w)da

Hence,

Example 3.

Joint density function of two continuous random variables X and Y is given by

_ 1 . —— v—px\ _, (r—px\ (y—py
f<x7y)_27r0XJY\/1—7p2€p[2(1—P2>{( ox ) 2,0< ox >< 7y )

2
+(y My) }], —00 < T <00,—00 <Yy <00
Oy

where p = Corr(X,Y), ox = y/Var(X), oy = \/Var(Y), ux = E[X], uy = E[Y]

fY(y):/_Zf(x,y)d:c: ! exp _l(y—,uy)Ql

2mol 2\ oy

1

1 :v—,uX)Q

fX(l‘)Z/_OOf(m,y)dyZ\/meXp _§< ox
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We can write the joint density as

R

2
1 1 [y —py +plox/oy)(x — px)
X exp |—=

2roi (1 — p?) 2 oyy/1 — p?

Hence,

fx(2)
_ 1 exp | L (y—uy+p(0x/ay)(w—ux)>2
2roi (1 — p?) 2 oyy/1—p?

EY|X =] = py — ploy/ox)(z — pix)
Var(Y|X =) = oy (1 — p?)

Example 4.

X is uniformly distributed in (0,1). E[X|X < 0.25] =7

f(x):{l’ O<z<l

0, otherwise
0.25
P(X <0.25) = F(0.25) = / 1-dr=0.25
0

Hence,

f(z) 1
< 0. = = =
fx|x§o.25 (.73‘:6 <0 25) P(a: < 0_25) 0.25 4

0.25
E[X|X <0.25] = / T fyx <005 (|7 < 0.25)dx
A <

0.25

:/ - 4dx
0

:4 |::C_2:|0.25
2 0

1
8
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Example 5.
Joint density of X and Y

y )
0, otherwise

e O<z<y,0<y<oo
f(:v,y)Z{

E[X2]Y = y] =7

|
<

L |~

Hence,

o0

E[X2]Y = y] =/ x fxpy (z]y)

—00

Y

|

2% Zdx
Yy

)

23
3
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Chapter 5

Common Probability Distributions:
Part 1

5.1 Discrete Random Variables

5.1.1 Bernoulli Random Variable (with parameter p)

The random variable x denotes the success from a trial. The probability mass function of the
random variable X is given by

px(0)=1-p
px(1) =p
Hence,
EX]=0-(1-p)+1-p=p

E[X?] = p
Var(X) = E[X?] — (BE[X])  =p—p* = p(1 — p)

The moment generating function is
o(t) =E[e™] = (1 —p) + e - p=1-p+pe
Check: ¢/(t) = pe, ¢'(t) = pe!. Hence, B[X] = ¢/(0) = p, E[X?] = ¢"(0) = p.

5.1.2 Binomial Random Variable (with parameters n and p)

The probability mass function of the random variable X is given by

. ny ; n—i .
pX(z):(Z,)p(l—p) , 1=0,1,...,n



Hence,

o

zan( N )p’“(l p)
k=0

=nplp+ (1 —p)]""

—

Alternately, Binomial random variable is number of successes in n trials. Hence, X = >""" | X,
where X; are independent and identically distributed Bernoulli random variable.

—E En:X] :zn:E[X =

Var(X) = Var(z X;) = ZVar(Xi) =np(l —p)

n exp(tZX)]
—le[ lexp(tX;)]

= (1—p+pe)"

The moment generating function

Check: ¢/(t) = n(pe' +1—p)"~'pe', ¢"(t) = n(n—1)(pe’ +1—p)"~*(pe")* +n(pe' +1—p)"~'pe’.
This gives E[X] = ¢'(0) = np and E[X?] = ¢"(0) = n(n — 1)p* + np
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5.1.3 Geometric Random Variable (with parameter p)

Let X denote the number of trials until a success occurs. The probability mass function of X
is given by

Hence,
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Now, consider the random variable Y = X — 1, i.e., E[Y] =E[X]-1=1/p— 1.

[e.9]

E[XY]= ZZ(@ —1)p(1 —p)™

:pZi(i— )¢ where g=1—1p
i=1

= pdiq (2(% - 1)Q’)

- pdiq <q2 i(k - 1)<1“>
il ()
i)
A (ed ()
:pdiq ((1 32@2)

|
O
<

I
=

)3> [Backsubstitute ¢ = (1 — p)]

—2(1-p)
(1-p) )3)

)

—
B
|
—_

—_
|
|
—_

|
)
+
)

B

w

I
=
7 N N N

|
o3
|
i)

|
)
s

s}
o

E[XY] =E[X(X —1)] = E[X? — X] = E[X?] — E[X]
= Var(X) + (E[X])? — E[X]

2—2p
P Var(X) +1/p* —1/p
L—p
Var(X) =
(X) e
The moment generating function
t
pe
t) =
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5.1.4 Poisson Random Variable (with parameter \)
The probability mass function of X is given by
e N

Hence,

Hence, Var(X) = E[X?] — (E[X])?=E[X(X — D]+ A=A =X+ -\ =\
The moment generating function

8

o) = B = YA -

—>\ )\e — ek(et—l)

Check: ¢'(t) = heteMe =1 ¢/ (t) = (Ae?)2ere D 4 \eteMe =1 This gives E[X] = ¢/(0) = A and
E[X?] = ¢"(0) = A + A
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Poisson theorem: If n — oo and p — 0 such that np — X then

(n) i n—i A
"t —— e
i

n—00 2!

This shows that for large n and small p we can approximate the binomial distribution with
Poisson distribution.

5.2 Continuous Random Variable

5.2.1 Uniform Random Variable

Let X is uniformly distributed over (a,b). The probability density function is given by

1
fX(x):m, fora<ax <b

=0 , otherwise

Hence,

E[X]:/OO fo(x)dx:/abxb L

0o —a

1 b
= 2 / xdx

1 [227°
“ita|3),

a+b

E[XZ]—/OO xzfx(x)dx—/bﬁbiad:c

1 b
:b—a/ 22dx

1 [237°
“ita|3),

1
= §(a2 + ab + b*)

Hence, Var(X) = E[X?] — (E[X])? = £ (b—a)?.

The moment generating function

€tb _ eta

o0 =35=a
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5.2.2 Exponential Random Variable with parameter \
The probability density function is given by

fx(z) = X, for x>0

=0, forx<0
Hence,
E[X] = / rfx(z)dr = / e Mdx
—00 0
— —me_)‘m}go - / e Mdr [using integration by parts]
0
e—)\:c -

E[X?) = / 2 fx(z)dr = / 22 he Mdx [use integration by parts twice]
- 0

Hence, Var(X) = E[X?] — (E[X])? = &

A2
The moment generating function

o(t) = E[e™]

= e e My
0
=\ elt=Nedy
0
A
At
Check: ¢'(t) = A\/(A —t)? and ¢ (t) = 2A/(A — t)3. Hence, E[X] = ¢/(0) = 1/\ and E[X?] =

#"(0) = 2/\%.

Properties of the Exponential Distribution
e The exponential random variable X is memoryless, i.e.,
PX>t+7|X>t)=P(X >71) Vi, 7 >0

Proof:

P(X>t+71,X >1)
P(X >1t)
P(X >t+T)
P(X >t)
o~ Mt+T)

PX>t+7|X>1t) =

Y
—e M =P(X >1)

Subhayan De



e X, and X, are independent exponential random variables with parameters A; and Ag,
respectively. Then

P(X) < Xy) = / P(X, < Xo|X; = 2)\ie M dw

0

:/ P(X2 > l’))\1€_)\1xdl'
0

= / [1— P(Xy < )] Ae”Mdx
0

_ / 1= Fy,(2)] Me %da
0

= / e 2T\ e Mg
0

= / e~ Grtre)e g
0

YR

o X, Xo,..., X, areindependent exponential distributed random variables with parameters

Nyi=1,2,... . n

Pmin(Xy, Xo, ..., X,) > 2] =P(X; > 2, Xo > x,..., X, > 1)

= ﬁP(Xi > 1)
= H[l — P(X; < z)]

~[Ii- -

5.2.3 Gaussian Random Variable with parameters (u,0?)

The probability density function is given by

1 1 (z—p\
fX(x):WeXp[—§<xaﬂ>],for—oo<x<oo
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Assume z = “#. Hence,

E[X] = / Z o fx(2)ds = \/% / (02 + p)e—2ds

o & 1 2
_ z2/2 —z%/2
= — ze dz + — e dz
\V 27 /—oo J a \|: V 2w —c0 ‘|
=0 ]

Var(X) = o2
The moment generating function of Z = (X — pu)/o

1 o 2
¢Z(t) — E[etZ] _ \/?/ 6tz€—z /QdZ
T J—o00

1 o] )

— —(2°—2tz)/2
= e dz

V2T /_Oo
1 .

_ )2 —1(z—1)?
=e — e 2 dz
V2T /_Oo

=1

2
_ 2

This gives
U2t2
¢X(t) _ E[etx] ) [et(aZ—I—u)} — ewE[etUZ] = exp { 5 + Nt}

Hence,
o*t?
¢'(t) = (u+to?) exp {T + Mt}
242 242
¢"(t) = (u +to?)* exp {% + ut} + o2 exp {% + Mt}
So, E[X] = ¢/(0) = 1, E[X?] = ¢"(0) = 4 + 0%, Var(X) = E[X?] — (E[X])? =
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Table 5.1: Common probability distributions: Part 1.
Probability pmf/pdf Moment generating Mean  Variance
distribution function, ¢(t)
Bernoulli 0)=1-
px(0) P 1L —p+pe p p(1—=p)
with parameter p px(1)=p
Discrete RV Binomial i)=(")p"(1 —p)"
pX( ) (z)p ( p) ) (1 —p +p€t)n np np(l _ p)
with parameters (n, p) 1=0,1,...,n
Geometric i1 pet 2
px (i) = p(1 —p) o p (A—=p)/p
with parameter p
with parameter A
Uniform fx(z) =+, oth_gta
x(7) = 5= e (a+b)/2 (b—a)?/12
. in the interval [a, b] fora<xz<b
Continuous RV
Exponential fx(x) = Xe™®,
x(@) 2 1/X 1/
with parameter A for x >0
: o 2
Gaussian fx(z) = ﬁexp [—% (=4) } ) exp [# L Mt} y 2

with parameters (i, o?) for —oo <z < 00




Example 1.

Seven fair coins are flipped. What is the probability that the outcomes are two heads and five
tails?

Denote the random variable X as the number of heads (successes) obtained.

Hence, X is binomial with n =7 and p = 1/2.

So,

P(X=2)= (g) (1/2)3(1 — 1/2)° ~ 0.1641

Example 2

An aircraft engine fails with probability 1 — p during a flight independent of other engines.

The plane can fly if at least half of its engines are running.

What can you say about p if the the engineer says two-engine plane is safer than a four-engine
one?

Let us denote the number of engines running during a flight for a four-engine plane by X4
and for a two-engine plane by X5. Note that X, is binomial with parameters n = 4 and p and
X5 is binomial with parameters n = 2 and p.

Hence, the probability that a four-engine plane will complete its flight

P(X4>2) )+ P(Xy=3)+ P(Xy=14)

( ) o (G)ra-nte (3=
- )* +4p*(1 —p) +p*

Similarly, the probability that a two-engine plane will complete its flight

= G)p(l —p)+ @)pz(l ~p)°

=2p(1 —p) +p°
Hence, the two-engine plane is safer than a four-engine one if

P(Xy>1)> P(X, > 2)

2p(1 —p) +p* > 6p*(1 — p)* + 4p*(1 — p) +p*
3p* —8p* +7p—2<0

(p—1)?*@Bp—-2) <0

3p—2<0 [since p # 1]

p<2/3

Example 3.

The probability that a traffic signal will malfunction is 0.01. Calculate the probability that in
a city with 100 traffic signals five or more will malfunction.
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The random variable X denotes the number of malfunctioning traffic signals.

Hence, X is binomial with parameters n = 100 and p = 0.01 (i.e., n large, p small).

Using the Poisson approximation of binomial, X is approximately Poisson distributed with
parameter A = np = 1.

Hence,
1 i .
P(X >5) = —P(X<5)z1—zi—!e
I TR
1020 3oyl
= 0.0037
Example 4.

In a fast-food joint, during rush-hour customer arrives at a rate of a per minute. It is given that
the arrival of the customer during a time period is Poisson distributed. Find the probabilities
that there are no customers and more than 10 customers in 7" minutes during rush-hour.

Denote the number of customers by X in 7" minutes during rush-hour.

Hence, X is Poisson distributed with parameter A = oT'.

So, the probability that there are no customers in 7" minutes during rush-hour

(ag;)oe—aT — 6—ocT

P(X =0)=

The probability that there are more than 10 customers in 7" minutes during rush-hour

10 (aT)
— 1 — — 1 _ —aT
P(X>10)=1-P(X <10)=1-)_ e
i=0
Example 5.
X;,2=1,...,10 are independent Poisson random variables with mean 1.

Get a bound on P (Zgl X, > 15).

Using Markov inequality,
10 10
E i Xil
P X; > 15
(210 < B

=1
Y EX
N 15
10-1 2

15 3

Example 6.

X and Y are independent binomial random variables with parameters (n, p) and (m, p), respec-
tively. Show that X + Y is also binomial with (n + m,p).
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PX+Y =k) =) P(X=iY=k—i

=0
k
= Z P(X =)P(Y =k —1) [by independence]
i=0
Y /n m
— i 1 _ n—1i k—1 1 - m—k+1i
; (Z.)p (1-p) (k - 2.>p (1-p)

Example 7.

X and Y are independent Poisson random variables with parameters A\; and Aq, respectively.
Show that X + Y is also Poisson with mean \; + \,.

(X =9)P(Y =k —1) [by independence]

Example 8.

X and Y are independent exponential random variables with parameters A and (m, p), respec-
tively. Estimate the probability density of Z = X 4+ Y.
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Fz(z) = /_Z /_;y fxy(z,y)drdy
- [ @ty

—00 — 00

= /oo Fx(z —y)fy(y)dy

—00

2l = P = 5 [ " Pz — )y (y)dy

dz J_o

= /OO d%Fx(z —y) fy(y)dy

_ / iz =) fr (y)dy

Hence,

z

N AV =gy O<y<z

fz(z) =

Ne My

I
%o\wc\

So, X +Y ~ Gamma(\, 2).

Example 9.

X and Y are independent uniform random variables on (0, 1). Estimate the probability density
of Z=X+Y.
The probability density of X and Y are

1, O<z,y<l1

fx(z) = fy(y) = {

0, otherwise
Hence,
1 1
1) = [ fxte= bty = [ fxtz = vy
0 0
For 0 <z <1,
fz(2) = / dy = z
0
For1 <z <2,

1
fz(z):/_ldy:2—2
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This gives a triangular density

Z, 0<2z2<1
fz(z2) =R2—2 1<2<2
0, otherwise

Example 10.

Order statistics Xi, X, ..., X, are independent and identically distributed with CDF F(x)
and pdf f(x). If X(;) is the ith smallest RV then determine the pdf of X ;.

n

Fx (@) = P(Xg) < @) = 3 _[F@)[L = F(a)"™*
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Example 11.

If Z1, 2, ..., 7, are standard Gaussian random variables (i.e., with zero mean and standard
deviation 1) and the random variables X;, Xy, ..., X, are given by

Xi=anZ1+ -+ a1y + 111
Xo =anZy+ -+ a2y + b2

Xi=ainZi+ -+ ainln +

Xm:am1Z1+"'+angn+Mm
ie, X = AZ + p where X = [X1, Xo, ..., X", A = [ay], Z = [Z1,Za, ..., Z,)7, and p =

(11, oy -y fm]-
Hence,

Cov(X) = AAT

In general, when Y = AX with Cov(X) =X

Cov(Y) = Cov(AX) = E[(AX — E[AX])(AX — E[AX])7]
— E[(AX — AE[X])(AX — AE[X])T]
=E[A(X - E[X])(X - E[X])"A"]

— AE[(X — E[X))(X — E[X])"] A”

2
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Chapter 6

Common Probability Distributions:
Part 2

6.1 Discrete Random Variables

6.1.1 Hypergeometric Distribution

Let the random variable X denote the number of acceptable items among n selected items from
a pool of N acceptable and M unacceptable items. Then the probability mass function is given

by Ny (M
P(X:i):px(i):%, i=0,1,...,min(n, N)

n

We can write X = > 7, X; where

P 1, if jth selected item is acceptable
7o, if jth selected item is unacceptable

The mean of X is

- - N nN
XI=3 2 =3 5y =

=0
niN N n—1
VarlX) = 3y (1_M+N> (1_M+N—1>

6.1.2 Negative Binomial Distribution

If X denotes the number of trials needed to obtain r successes X has a probability mass function

—1
P(X:n):(z_l)(l—p)”rpr, n=rr+1,...,00



where each trial results in a success with a probability p.

6.2 Continuous Random Variables

6.2.1 Gamma Distribution
The probability density function is given by
(Ax)a_l -z
o) = @) e x>0
0 otherwise

where the Gamma function is defined by

For integer o, I'(a) = (v — 1)
The mean of the Gamma distribution

E[X] = /OOO o f ()dz

- I(e)
1

e /O (Ar) Ae N da
B CET S
o I
(

Al ()

F(ﬁ) * —\z
(G- 1) / v v P=erd
C(B-1r(-1)
BEECESY
-1 «

A A

1
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Similarly,

E[X?] = /000 2? f(z)dx

1 > 2 a—1 —\x
F(a)/o ¥ (Az)" " Ae Mdx
1 = at+ly Az
)\QF(Q)/O (Ax)* T e dx
:rm+a{/WQmﬁ“
Xl(a) Jo T(a+2)
L'(s) )
¥ ), T
_(B-D(B-T(E-2)
NT (5 —2)
_B-nE-2)
2
_ala+1)
==

Ae—Am

-1

Hence,

Var(X) = E[X?] - (E[X]?)” =
The moment generating function is given by

o(t) = E[e]

Check:

ala+1)

Incomplete Gamma Function

Incomplete Gamma functions are defined as

IG(u7a):: 0

Subhayan De
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f=a+2)

«
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Using y = ax,

xr
P(G/ < X S b) — m/ xa_le—)\xdx

1 Ab . Aa .
== y* ey — / Yo e‘ydy]
I'(a) [/0 0

= Ig(A\b, ) — Ig(Aa, a)

6.2.2 Beta Distribution

The Beta function is defined as
1
B(a, ) = / N1 —2)de, a,>0
0

This is related to Gamma function

The Beta random variable has a probability density function given by

(1 — )Pt
B(a, B)

fz) =

Similarly,

B(a+2,0)
B(e, §)
ala+1)
@t At i)

E[X?] =

Hence,
af
(a+ 82 (a+B8+1)

Var(X) = E[X?] - (E[X])? =
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6.2.3 Rayleigh Distribution

The probability density function is given by
fy {ET ez
0 otherwise

The cumulative distribution function is given by
& 2
a _ a7
F(z) = / —e 2%da
0 O
x 2 2

a a
= T202d | —
freeiam)

2

x
= 1 —_ 6_20'2

oo .2 2
E[X] = / x—2e_2z7dx
0

o
2

= / Vate 't odt [where ¢t = x_Q]
0 2r
= \/50/ t2leodt
0

= V20T (g) [using the definition of I'(+) function]

Similarly, Var(X) = (4=m)o”

6.2.4 Cauchy Distribution

The probability density function is given by

1
flz) = 7 >0,—00 <z <00

Ty (1 + (%>2> |

Cauchy distribution does not have mean and variance.

6.2.5 ? Distribution

Z, Zy, . .., Zy are standard Gaussian random variable (i.e., with zero mean and standard devi-
ation 1) then the random variable X = """ | Z? is x squared distributed. x-square distribution
with n degrees of freedom is identical to Gamma distribution with parameters n/2 and 1/2.

lex/Q (z)n/Q—l

fla) = g 2

0
/2 7
Hence, E[X] = n and Var(X) = 2n.
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6.2.6 Student’s ¢t Distribution

Let us define the random variable 7

Ve /n
where Z is a standard Gaussian random variable and 2 is a chi-squared random variable with

n d.o.f. Then X has a Student’s ¢ distribution with n degree-of-freedom. This distribution is
symmetric with E[X] = 0,n > 1 and Var(X) =n/(n —2),n > 2.

X =

6.2.7 F Distribution

Define

_ Xa/n

XE/m
where x2, x2, are chi-squared distributed with degrees-of-freedom n and m, respectively. Then
X is F' distributed with degrees-of-freedom n and m.

6.2.8 Lognormal Distribution

In lognormal distribution, the logarithm of the random variable has a normal distribution.
Lognormal distribution has a probability density function

- g

The parameters £ and \ are related to the mean and variance of the distribution.

1
E[X] = ux = exp ()\ + §§2>
Var(X) = o = (e ~ 1)
This gives

1
A=2Inpuy — 51n(0§(+u§()

& = —2Inpy +In(0% + %)

()]

=In
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Table 6.1: Common probability distributions: Part 2a.

P ili M i .
robability pmf/pdf oment generating Mean Variance
distribution function, ¢(t)
N (DG nN N
) — NiJ\n—i 1 —
Hypergeometric px (i) () J\/?-JFVN M+N ( M+N
i=0,1,...,min(n, N) (1_ME\7171)
Discrete RV '
Negative binomial i) = ("Ha = p)yTyp, o\ , (-
g px(i) = (;_) (L =p)"p (ll_pz;t> ey : (e
with parameters (7, p) i=rr+1,...,00
a—1
Gamma fx(x) = (AL)\e_’\‘”, a
@ =" (=) /2 o/ X
with parameters (a, \) forx >0
zo—1 1—w)5*1
Beta fx(r) = (T> ot 71h=1 atn a af
Continuous RV Bleuf) [ DIAEE - | ot Bn a+B (a+8)2(atp+1)
with parameters («, () for a, 8 >0
Rayleigh fx(z) = Zev/20°, 5242 o 02
)= 1+ ote” /2 /n/2 (erf (7%>+1> T oy\/7/2 (4 2)
with parameter o> forz >0

Terf(z) = \/LE [f e tat = \% e tat
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Table 6.2: Common probability distributions: Part 2b.

Probability

Moment generating

pmf/pdf Mean Variance
distribution function, ¢(t)
Cauch T) = —— e,
y fX< ) 7T’Y<1+(x;u)2> - S
with parameters (1, ) for v > 0,—00 < x < 0
2 lemer2(g)"”! —n/2
X fx(@) = (1—2t) n 2n
with d.o.f. n for a, B >0 t<1/2
r(2) 2\~
Student’s ¢ )= L <1 + x—) ,
Continuous RV fx(@) Vorl(%) v 0 0
with parameter v for v >0 forv>1 for v > 2
n/2— n —(n+m)/2 m m2(n+m—
with d.o.f.s n,m for x € [0,00) and n,m >0 m > 2 m >4
2
L 1 — 1 1 (lnxf)\>
ognorma, fx(z) Tores OXP { 2 (™% : px 12 (e — 1)
with parameters (A, §) for x >0 = (3¢




Example 1.

If Gamma random variable X with mean 15 psf and coefficient of variation (COV) 25% is used
to represent loads on building then what is the probability that the load will exceed 25 psf?

o}
EX]=—=1
X]=5=15
v/ Var(X A 1
cov = YYX) _Vad L o
E[X] a/\ Va
a =16
16
A=—=1.
I 067
Hence,
P(X >25)=1— P(X < 25)
=1—1I(\ 25 a)
=1-—15(26.67,16)
=1-0.671=0.329
Example 2.

Four earthquakes in last 50 years with magnitude more than 7.
Modeling the occurrences as Bernoulli random variable with p = 4/50 = 0.08, the probabil-
ity that at least one earthquake will occur in 20 years

P(X>1)=1- P(X =0)

=1- <2OO> (0.08)°(0.92)0
=0.811

Modeling the occurrences as Poisson process with rate v = 4/50 = 0.08. Hence, at least one
earthquake will occur in the next 20 years with probability

P(Xy > 1) =1— P(Xa = 0)
1— (0.08 x 20)0670.08><20
0!

=0.798

Example 3.

In the last 125 years 16 earthquakes with a magnitude larger than 6 occurred. If the occurrence
of the earthquakes are Poisson distributed what is the probability that the one will occur in
the next 2 tears?
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The rate v = 16/125 = 0.128 earthquakes/year. Define X; as the number of earthquakes in
the next t years and 7,, as the time up to when nth earthquake occurs. Hence, X; is Poisson
distributed and 7, is exponentially distributed. This can be used to write

P(Xy>1)=1-P(X5,=0)
1— (0.128 x 2)06—0.128><2
0!

= 0.226

This is equivalent to
P(Ty <2) =1— e "1%%% = 0.226

What is the probability that there are no earthquakes in the next 10 years?

(0.128 x 10)°

0' 670.128><10 — 0278

P(Xl():O) =

This is equivalent to
P(Ty > 10) = ™ 12810 = (.278
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Chapter 7
Sampling Statistics

Assume the population has mean p and variance o?. n samples from this population are

X1, Xyt X

7.1 Sample Mean

Define the sample mean as
-1
X = E(X1+X2+---+Xn)

This estimator of population mean is unbiased.

. Xi+Xo+-+ X,

E[X] =E
n
1
= (B +EX] -+ ELX)
1
n
=
_ X1+ X o+ X
Var(X) = V. ( i ”)
n
=— | Var(X;)
=1
no?
T
_7
n

7.2 Sample Variance




This estimator of population variance is unbiased.

zn: X7 | — nE[X?]
 E[X?] — nE[XY
= n [Var(X;) + (E[X])?] — n [Var(X) + (E[X?))?]

=no’ +np* —n (U—) — nu?
n

(n—1)E[S?] =E

)

= (n—1)o?

Hence, E[S?] = o2,

7.3 Central Limit Theorem

X1, Xo, ..., X, is a sequence of independent and identically distributed random variables with
mean g and variance o2. The distribution of X1+X2J;'\7£X"_"“ tends to standard normal as
n — oQ. )

Hence, for the sample mean X: j{/—\_/% is approximately a standard normal random variable.

If the samples are from a normal population then j(/;\/’% is a standard normal random variable,

(n —1)S?/0? is a x? random variable with n — 1 degree-of-freedom and /n(X — pu)/S has a t
distribution with n — 1 degree-of-freedom.

Example 1.

In bags of potatoes from a certain company the weight is written as normally distributed with
mean 1.5 Ib. with a standard deviation of 0.25 1b.

(a) What is the probability that the potato bag you picked to buy weighs more than 1.7
1b.?

Denote the weight of the randomly picked bag by X.

X-15 17-15
PX>17) = P( 025 ~ 025 >
— P(Z>08)
—1-3(0.8)

=1-0.7881 = 0.2119

(b) What is the probability that the potato bag you picked to buy weighs in between 1.31b.
and 1.7 1b.?
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13-15 X-15 _17-1.
P13<X<17) = P( 30255< 0255g 70255)
— P(—08 < Z <08)
= P(Z <08)— P(Z < —08)
— $(0.8) — B(—0.8)
=26(0.8) — 1

2
=2x0.7881 — 1 = 0.5762

(c) If you pick 25 bags and observe their average weight what is the probability that their
mean is more than 1.55 1b.7

i} X—15 _155-15
P(X>17) = (0.25/\/% ~ 0.25/\/%>
=P(Z >1)
=1-®(1)

=1-0.8413 = 0.1587

(d) What is the probability that their mean is in between 1.45 Ib. and 1.55 1b.?

1.45 — 1. X — 1. 1.55 —1.
P(1.45<X§1.55):P( b— 15 5 L% 5>

025 0.25/v/25 ~ 0.25/4/25
P(-1<Z<1)
P(Z<1)-P(Z<-1)

= <1>(1) —O(-1)

=20(1) — 1

=2 x0.8413 — 1 = 0.6826

Example 2

Team A in a cricket match scores with mean 250 and standard deviation 25. If you watch 10
such games what is the probability that the sample variance calculated using those 10 games
will exceed 307

n = 10,02 = 625. Hence, (n—012)52 _ %

052 9
P(S?>900)=P( =— > —-900
( ) (625 625 )

= P (x5 > 12.96)
=1— P (xj <12.96)
=1—0.8356 = 0.1644
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Chapter 8

Parameter Estimation

Random samples from a probability distribution F'(z) are: x = [z, ¥, ..., 7,]T. The probabil-
ity distribution has a parameter vector 8 = [0y, 0, ...,0,,]7.

Estimator: Statistic used to estimate unknown 6.

Estimate: Observed value of the estimator.

8.1 Maximum Likelihood Estimator

The likelihood for independent samples x is defined as
L(x;0) = Hf(xi;O)
i=1
The maximum likelihood estimator is defined as

0,1, = arg max L(x;0)
To estimate the value of @ that maximizes L or equivalently In L we will set

OlnL
06,

0, fori=1,2,...,m

Example 1.

For Bernoulli distribution,
P(X =) = (1= )’

Hence, among n observations, the likelihood is defined as

Lx;p) =[[pr"(1-p)'™
=1
= pt (1 — p)ZT 1—;
= p"*(1 —p)"=7)

The log-likelihood is
InL=nzlnp+n(l—2)In(1—p)



Taking derivative with respect to the parameter p

(1-pz-(1-2)p=
"o
= p=I= iz
Hence, the ML estimator is p = &
Example 2.
For Poisson distribution .

P(X =2)= —'e_)‘
!

Hence, among n observations, the likelihood is defined as

The log-likelihood is
InL =nzln A —nA — Zln(mi!)

=1

Taking derivative with respect to the parameter A

dlnL_m: B
. oa T
SRS WD DL
n

Hence, the ML estimator is \=7Z.

Example 3.

For Gaussian distribution

flz) = \/% exp {—%}

Hence, among n observations, the likelihood is defined as

[

L(x; pu,0%) = ex {—
(i, 0%) 1} oo P 57

_ 1 - (z; — p)?
= @rory P [_ 2
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The log-likelihood is

InL = ——ln(27r) - = ln Z

=1

202
Taking derivative with respect to the parameter p

8lnL

Zi:l Li

n

Hence, the ML estimator is ji1 = Z.
Taking derivative with respect to the parameter o2

OlnL
d(0?) T +Z 204
1
2 1 EPSY
= _nizo (xz :u)

Hence, the ML estimator is 62 = £ 3" (z; — ).

Example 4.

For Gamma distribution )
— )\a a—1_—)dz
f(x) () e

Hence, among n observations, the likelihood is defined as

1
L(x;a,\) = H m)\axa_le_)‘x

%
n
a Hx(ix_l 6—)\ S
=1

InL = (a—1) Zlnxz—)\le (na)In A —ninT'(a)

The log-likelihood is

Taking derivative with respect to the parameter A

Oln L - no
N __;x”T_O
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Hence, the ML estimator is = T——
Zz 11'2

Taking derivative with respect to the parameter «

n

Zlnxl—i—nln/\—

=1
. T'(a) 1< 1 &
= lna—rd) :ln<ﬁ;xi>—ﬁ;1nxi

This is a nonlinear equation needed to be solved to get &.

Oln L
O

nl’(a) _
o)

Example 5

If the observations {0.3,0.2,0.5,0.8,0.9} are obtained from a distribution with f(z) = 0291, z >
0 then estimate the value of # using Maximul Likelihood method.

The likelihood is defined as .

L(x;0) = H 08!

=1

The log likelihood is

5
InL=5n0+ (0 — 1)2111@-

Taking derivative of In L with respect to

5

OlnL 5
20 —g—l—Zlnxi—O

i=1

= )= R 1.3038

Z?:l hl ZT;

Example 6.
For Uniform distribution in (0, 6)

Hence, among n observations, the likelihood is defined as

L(x:0) = %

?|»~H::

The log-likelihood is

InL=-nlné
This is maximized when 6 is minimum but 6 > max(zy, za, ..., z,).
Hence, the ML estimator is § = max(x1,xo,...,x,).
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8.2 Interval Estimate

Let X, Xs,..., X, are samples from a Gaussian distribution with mean p and variance o2

The point estimator X is Gaussian with mean p and variance o2 /n. Hence,

X —
P( 1.96 < =X <196>:0.95
o/Vn

_ o — g
PlX—-196— X+196— ) =0.
( 96ﬁ<u< + 96\/5) 0.95

Based on the observations, with 95% we can say that the population mean g lies within the
interval (x —1.96-% VLR 1.96\%) — known as the 95 percent confidence interval estimate of

In general, 100(1—«) percent two-sided confidence interval for y is (97: — Za /g\%, T+ 24 /2\%).
One-sided upper confidence interval for p is (:f — za\/iﬁ, —|—oo).

One-sided lower confidence interval for y is (—oo, T+ za\/iﬁ>

8.2.1 Sample size:
If we want the 100(1 — «) percent two-sided confidence interval for p to be within (z £ Az) we

need a sample size
2204/20— 2
n =
Ax

100(1 — )% two-sided confidence interval:

90% confidence: o =10, z4/2 = 1.65

95% confidence: o =5 , 2475 = 1.96

98% confidence: o =2 |, 2,70 = 2.33

99% confidence: o =1 , 2,72 = 2.58

Similarly, the following Table shows a variety of cases for samples from a normal population:
Note that, s = —L-3""  (z; — T)2

8.2.2 Quick reference:

Table 8.1: Different cases.

Case Parameter | Confidence interval Lower interval Upper interval
2 = o = o — o
o known L (ac + za/g\/—ﬁ> (—oo, T+ za\/—ﬁ> <x — Za s —i—oo)
o? unknown 1 (f + toc/2,n—l\/iﬁ> <—OO, T +lan- \/iﬁ) (57 — lan—175; —I—oo)
¢ unknown o? ( (D)5 _(n-1)s* ) (07 2(”——1)52) ((n_l)s +oo)
Xa/2,n-1" Xl—a/2,n—1 Xi—a/2,n—1 Xa/2,n—1
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Example 6.

Estimate the sample size needed for mean to be within +0.25 where ¢ = 2 and a confidence

interval of 95%.
22020 2
Ax

2% 1.96 x 2\ ?
0.25

984

n

Q

Example 7.

The lifetime X of light bulbs are exponentially distributed. Based on observation of 81 light
bulbs we obtain their average lifetime is 200 hours. Estimate the 95% confidence interval for
the mean lifetime.

For exponentially distributed random variable X,

fla) = re

The mean of X is 1/\ and variance is 1/\2. For large number of samples n, the sample mean
is Gaussian with mean 1/\ and variance
Hence, we can write

1
ni2"

_1
P (—1.96 <—F2< 1.96) =0.95
A
P(Eto6t cx<tirost ) =095
A W S Wy
1 1.96 1 1.96
Pi-(l-—%=)<X<-(1l4+——=); =09
HEEEHEE)

P X <1 X =0.95
14+1.96//n XA 1-196/\n)

200
1+1.96/v/81

1

<X<

Hence, the 95% confidence interval for the mean lifetime of the bulbs is

Example 8.

For Poisson distributed random variable get the 100(1 — «) confidence interval.
The p.m.f. is given by .
oY

2!

P(X =i)=e
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The mean E[X] = A\ = Var(X). Hence, for large n X is approximately Gaussian with mean \
and variance A/n. This helps in writing

i} X\ _ A

P (X - 1.96\/j <A< X+ 1.96\/j) —0.95
n n
i, A

P <|X Al < 1.96\/;) —0.95

P { (X —2) < (1'26)2

/\} =0.95

Therefore, the confidence interval is the two solutions of the following quadratic equation
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Chapter 9

Hypothesis Testing

Random samples from a probability distribution F(x) are: x = [x1,Zs,...,2,]T. The proba-
bility distribution has a parameter vector 8 = [0y,60s,...,0,,]7. Hypothesis tests allow you to
test some hypotheses on the unknown parameters. For the assumption 8 = 6, write the two
competing hypotheses are:
Null hypothesis, Hy:0=286,
Alternative hypothesis, H; : 8 # 6,
The critical region C' is used in the following:
accept Hy if (X1, Xs, ..., X,,) € C
reject Hy if (X1, Xo,...,X,) € C
Two kinds of errors are encountered in hypothesis testing:

(i) Type I error: This error occurs if Hy is true but (X, Xs, ..., X,) € C. The probability
of occurring of such errors is

P{(Xl,XQ, R ,Xn) S C|H0 is true} =
where « is called the significance level of the test.

(ii) Type II error: This error occurs if Hy is false but (X1, Xo, ..., X,,) € C. The probability
of such an error is a function of 8 and is denoted by

P{(X1,Xs,...,X,) & C|H, is false} = 5(0)

e The power of the test P(0) is defined by the probability that Hj is rejected when it is

false, i.e.,
P(0)=1-p(0)=P{(X1,Xs,...,X,) € C|H, is false}

e The most powerful test has minimum £(0). In general, C' for a most powerful test depends
on @ but if it is same for every 8 € © the test is called uniformly most powerful.

9.1 The Mean of a Normal Population

9.1.1 Known Variance
Two-tailed Test

Null hypothesis, Hy: p= o



Alternate hypothesis, H; : 1 # jo
Assume the critical region for an « significance level test is given by

C= {(Xl,XQ,...,Xn) : |X—ILL0| > C}
Hence,

P(IX — ol > ¢) = a

(5 o5) -

P (|Z| > & n) =«
o
cyn
= Raj2 = —
o
ZQ/QU
CcC =
Vn
The critical region thus becomes
Z’.l_l X, 2a/20
C=<(X,X,,....X,) : |=FFF— — >

{( 1, %2 ) ‘ n Ho NG

This helps in writing the hypothesis testing as

accept Hy if @]X — o] < zay2;  reject Hy if \/—H|X — ol > zas2
o o

The p-value is defined as

p:p(m > ﬁp?—uo\) — 2P (Zz @X—m)

o
Example 1.

You went to a grocery store and weighed 15 bags of potatoes. Your observations in lb. are:
1.51, 1.55, 1.44, 1.43, 1.61, 1.45, 1.65, 1.54, 1.46, 1.50, 1.59, 1.53, 1.57, 1.62, 1.64. Assume you
know their standard deviation o = 0.25. Use a = 5% significance level.

Your hypotheses about mean of the potato bags are:

Null hypothesis, Hy:p=151b.

Alternate hypothesis, H; : i # 1.5 1b.

The mean of the observations is X = 1.54 1b.

Hence, the test statistic is \/TE|X — lo| = %]1.54 — 1.5/ = 0.6197 < zp.025 = 1.96.

Accept the null hypothesis, Hy.

The p value is 2P (Z > 0.697)
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One-sided Tests
(a) Null hypothesis, Ho: = po (or p < )
Alternate hypothesis, H; : 1 > py

accept Hy if @(X — o) < zo;  reject Hy if @(X' — o) > Za
o o

The p-value is defined as

n  —
p=P<Zz %_(X—Mo))
(b) Null hypothesis, Ho: = po (or > pg)

Alternate hypothesis, H; : i < g

accept Hy if ﬂ()_( — Ho) > —za;  reject Hy if @()_( — o) < —Za
o o

The p-value is defined as

p—P<Z§\/7%(X—M0))

9.1.2 Unknown Variance

For the case of unknown variance we need to use the ¢ test:
Null hypothesis, Hy: p= o
Alternate hypothesis, Hy : i # g

accept Hy if gp_( — o] < tajon—1; reject Hy if \/?EIX — po| > ta/2,n—1

where

S2 _ Z?:l(X’L — X>2
n—1
The p-value is defined as
n, = n —
p=P <\Tn1\ > %\X - uo\) —2p (TM > %\X - uo\)
One-sided Tests
(a) Null hypothesis, Hy: p=po (or p < pp)
Alternate hypothesis, H; : u > pg

accept Hy if \/—E(X’ — o) < tan-1; reject Hy if \/?ﬁ

X — > tan
S ( :LLO) n—1

The p-value is defined as
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(b) Null hypothesis, Hy: p=po (or p > pp)
Alternate hypothesis, H; : 1 < g

accept Hy if \/?E(X — o) > —tan—1; reject Hy if g(X — o) < —tamn—1

The p-value is defined as

LY
o

p=P (Tn (X — Mo))

9.2 The Variance of a Normal Population

Null hypothesis, Hy:o0*=0}
Alternate hypothesis, H, : 02 # o2
n—1)52
accept Hy if X%_Q/Q o1 < % < XZ/Q n_1; Teject Hy otherwise
k) O—O 7

The p-value is defined as

—1)52 —1)5?
p:2min{P<Xfl_1<%>,1—P<Xi—1<u>}

0 90
Example 2.

Based on n = 25 observations, sample average velocity of vehicles on a freeway is V = 110.12
km/hr. Use a = 5% significance level. Your hypothesis about the velocity of the vehicles is
Null hypothesis, Hy: py =110
Alternate hypothesis, H; : puy # 110

c=04
The test statistic
- V25
\/75|X — o] = 211012 = 110] = 15 < 20025 = 1.96
Accept Hy.

If o is unknown and you estimate s = 0.6.
The test statistic

- 25
\/TE|X — Mo‘ = 0—\/g|1].012 — ].10‘ =1< t0.025724 = 2.06

Accept Hy.
If your estimate s = 0.25.
The test statistic

] 55
\%X | = 0—\/2_5|110.12 ~110] = 2.4 > to 09501 = 2.06

Reject Hy.

Subhayan De



Example 3. The concrete supplier claims his concrete has a mean compressive strength of
38 N/mm?. On-site you tested randomly selected cubes and got a sample mean 37.5 N/mm?.
Use o = 5% significance level.

If you want to test the following hypotheses about variance of the concrete cubes with 41
samples giving sample standard deviation s = 3.75 N/mm?:

Null hypothesis, Hy:0?°=9

Alternate hypothesis, H; : 0% # 9

The test statistic

(n—1)S> _ 40 x (3.75)?

2
09

- 625 > X3.025740 == 593

Reject Hy.
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Chapter 10

Regression

10.1 Single variate case

We want to fit a linear regression curve Y = a + fz using data {z;, Y;}? ;. The coefficients are
estimated as A and B using

Z?:l Y, — T Z?:l Y;
Doy T — na?

A=Y — Br

B =

Estimate of variance of the noise present is

2 _ SSkr
n—2

S

The 95% confidence interval of the mean response is

1 ($0 — .f')Q SSR
A+ Bxo+ 4/ — ta/2.m—
B \/n * Sorx?—nz?\ n—2 [2in=2

The 95% confidence interval of future response is

n+1 To — T )2 SS
A‘i‘BmOi\/ + ( : ) i ta/2,n—2

n 2_ =2 _
n D1 T —nT? Vo —2

10.2 Multivariate case

In a multivariate case Y = a + pBix1 + Bexe + - - + Brxk, the coefficients can be estimated
using
I zy 29, Y
I z12 X9 Ys
X=1. . Y =

1 Tin Ton Yn



and

B=| B | =(XTX)(XTY)

Example 1.

(a) Fit a linear regression curve Y = a + Sz to the following data.

No. x; Y; z;Y; x? (Y; — A — Bux;)?
1 1.11 0.52 | 0.58 1.23 0.0313
2 1.17 | 040 | 0.47 1.37 0.0009
3 1.79 | 097 | 1.74 3.20 0.1110
4 5.62 | 2.92 |16.40 | 31.60 0.4000
5 1.13 | 0.17 | 0.19 1.28 0.0328
6 1.54 | 0.19 | 0.29 2.37 0.1158
7 3.19 | 0.76 | 2.43 | 10.15 0.2360
8 1.73 | 0.66 | 1.14 2.99 0.0023
9 2.09 | 0.78 . . .

10 275 | 1.24
11 1.20 | 0.39
12 1.01 0.30
13 1.64 | 0.70
14 1.57 | 0.77
15 1.54 | 0.59
16 2.09 | 0.95
17 3.54 1.02
18 1.17 | 0.39
19 1.15 | 0.23
20 2.57 | 0.45
21 3.57 | 1.59
22 5.11 1.74
23 1.52 | 0.56
24 2.93 1.12
25 2.93 | 0.64
Sum || 53.89 | 20.05 | 59.24 | 153.44 1.7350

T =53.89/25 =2.16, Y =20.05/25=0.80
Hence,
Yo mY,—zy Y _ 59.24 — 2.16 x 20.05
S a? — nz? 153.44 — 25 x (2.16)?

=11

A=Y — Bz =0.80 — 0.435 x 2.16 = —0.14

B — 0.435
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Hence, the linear regression fitted to the data is Y = —0.14 4 0.435z.
(b) Estimate of variance of the noise present is
o SSr 1735

ST -2 23

= 0.075

(c) Estimate P(Y > 2|X = 4) =7 assuming Y given X = x is Gaussian distributed.
E[Y|X = 4] = piyx—4 = —0.14 + 0435 x 4 = 1.6

Hence,

P(Y >2|X =4)=1-P(Y <2|X =4)

2 — _
:1_¢< MY|X4>
s

2—-16
=1—-¢ =0.072
<\/0.075>

(d) Estimate the 95% confidence interval of the mean response at xy = 1.
The 95% confidence interval is

1 (.To - Zf')2 SSR
A+ Bxg+4/— ta/2.n—
B \/n * S a?—nz2\ n—2 [2in—2

1 (1—2.16)2 1.7350
— 0205+ ] —
25 T 15344 — 25 x (2.16)2 V23

= (0.138,0.452)

x 2.069

(e) Estimate the 95% confidence interval of future response at zo = 1.
The 95% confidence interval is

n+1 (rg — 7)2 SSk
A B j: ta n—
B \/ n Yomx—nz?\ n—2 /22

26 (1—2.16)> 1.7350
—0.295+ (| —
25 " 15344 — 25 < (2162 V23

= (—0.295, 0.885)

x 2.069

Example 2.

Fit a regression curve Y = a + 121 + Poxs.

Subhayan De



Z
°

X1 X2 Y

2375 | 39.27 | 47.5
1459 | 39.00 | 52.3
604 | 38.35 | 56.8
3242 | 37.58 | 48.4
550 | 39.38 | 54.2
675 | 38.05 | 55.1
635 | 39.65 | 5H4.4
2727 | 38.66 | 48.8
2424 | 37.97 | 50.5
659 | 40.10 | 52.7

© 00 IO U i W N =

—
e

Form the matrices

2375 39.27 ] 475 ]
1459 39.00 52.3
604 38.35 56.8
3242 37.58 48.4
550 39.38 54.2
675 38.05 55.1
635 39.65 54.4
2727 38.66 48.8
2424 37.97 50.5
659  40.10 52.7 |

— = = = = e e e e

Hence,
A 121.05

B=| B | = X'X)"'(X*Y) = | —0.0034
By —1.644

The estimated regression curve is Y = 121.05 — 0.0034x; — 1.644x>.

Example 3.

Fit a regression curve Y = a + flogx.
Assume z = log x. Hence, the regression curve is Y = a + (2.

z = 58.3408/10 = 5.8341, Y =6.40/10 = 0.64

Hence,

S LAY, — 2L, Y,  37.5453 — 5.8341 X 6.40
ST 22—nz2 3411911 — 10 x (5.8341)?

=11

A=Y — Bz = —0.8264

B = =0.2514

Hence, the nonlinear regression curve fitted to the data is Y = —0.8264 + 0.2514 log x.
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No. || o | Yy | z=logax; | 2Y; 22
1 185 1 0.50 5.2204 2.6102 | 27.2521
2 310 | 0.48 5.7366 2.7536 | 32.9083
3 260 | 0.51 5.5607 2.8359 | 30.9212
4 320 | 0.58 D.7683 3.3456 | 33.2735
5) 480 | 0.60 6.1738 3.7043 | 38.1156
6 340 | 0.67 5.8289 3.9054 | 33.9766
7 380 | 0.69 5.9402 4.0987 | 35.2856
8 540 | 0.75 6.2916 4.7187 | 39.5838
9 340 | 0.82 5.8289 4.7797 | 33.9766
10 || 400 | 0.80 5.9915 4.7932 | 35.8976

Sum 6.40 | 58.3408 | 37.5453 | 341.1911




